Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Biol (Weinh) ; 8(5): e2300642, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548669

RESUMEN

Senescent pre-osteoblasts have a reduced ability to differentiate, which leads to a reduction in bone formation. It is critical to identify the keys that regulate the differentiation fate of senescent pre-osteoblasts. LINC01013 has an essential role in cell stemness, differentiation, and senescence regulation. This study aims to examine the role and mechanism of LINC01013 in regulating osteogenic differentiation in senescent human embryonic osteoblast cell line (hFOB1.19) cells induced by hydrogen peroxide (H2O2). The results show that LINC01013 decreased alkaline phosphatase activity, mineralization of hFOB1.19 cells in vitro, and the expression of collagen II, osteocalcin, and bone sialoprotein. LINC01013 knockdown enhances the osteogenesis of hFOB1.19 cells and rescues osteogenic differentiation impaired by H2O2. METTL3 negatively regulates LINC01013 expression, enhancing hFOB1.19 cells' osteogenesis in vitro and in vivo. METTL3 overexpression can enhance hFOB1.19 cells' osteogenic differentiation impaired by H2O2. YTHDF2 promotes LINC01013 decay, facilitating osteogenic differentiation. YTHDF2 overexpression rescues hFOB1.19 cells osteogenic differentiation impaired by H2O2. Taken together, METTL3 upregulates osteogenic differentiation by inhibiting LINC01013, and YTHDF2 accelerates LINC01013 degradation, reducing its inhibitory effect. This study highlights LINC01013 as a key regulator in the fate switching process of senescent hFOB1.19 cells, impacting osteogenic differentiation.


Asunto(s)
Diferenciación Celular , Senescencia Celular , Peróxido de Hidrógeno , Metiltransferasas , Osteoblastos , Osteogénesis , ARN Largo no Codificante , Osteogénesis/efectos de los fármacos , Osteogénesis/genética , Peróxido de Hidrógeno/farmacología , Humanos , Diferenciación Celular/efectos de los fármacos , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoblastos/citología , Senescencia Celular/efectos de los fármacos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Línea Celular , Animales
2.
Cell Prolif ; : e13607, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38353178

RESUMEN

To investigate the role and mechanism of FBLN1 in the osteogenic differentiation and bone regeneration by using umbilical cord mesenchymal stem cells (WJCMSCs). We found that FBLN1 promoted osteogenic differentiation of WJCMSCs and WJCMSC-mediated bone regeneration. It was showed that there was an m6 A methylation site in 3'UTR of FBLN1 mRNA, and the mutation of the m6 A site enhanced the stability of FBLN1 mRNA, subsequently fostering the FBLN1 enhanced osteogenic differentiation of WJCMSCs. YTHDF2 was identified as capable of recognizing and binding to the m6 A site, consequently inducing FBLN1 instability and repressed the osteogenic differentiation of WJCMSCs. Meanwhile, miR-615-3p negatively regulated FBLN1 by binding FBLN1 3'UTR and inhibited the osteogenic differentiation of WJCMSCs and WJCMSC-mediated bone regeneration. Then, we discovered miR-615-3p was found to regulate the functions of FBLN1 facilitated by YTHDF2 through an m6 A-miRNA regulation mechanism. We demonstrated that FBLN1 is critical for regulating the osteogenic differentiation potentials of WJCMSCs and have identified that miR615-3p mediated the decay of FBLN1 mRNA which facilitated by m6 A reading protein YTHDF2. This provided a novel m6 A-miRNA epigenetic regulatory pattern for MSC regulation and bone regeneration.

3.
Waste Manag ; 175: 121-132, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38194797

RESUMEN

Kish graphite is a typical byproduct of steel production, and its enrichment and purification are essential prerequisites for its high value and comprehensive utilization. To solve the problem of recovery and application of difficult-to-treat kish graphite with a small particle size obtained from metallurgical dust, kish graphite in blast furnace tapping yard dust was effectively enriched and purified by a comprehensive flotation-acid leaching treatment process in this study. The influence of the flotation agents on the flotation process was explored. The results showed that the optimized flotation agent dosage was 500.0 g·t-1 (collector) and 120.0 g·t-1 (frother), respectively. Based on the optimized flotation scheme, a graphite concentrate (FG) with 79.12 % carbon content and 93.5 % carbon recovery was obtained. After the leaching treatment with a HCl-HF mixed acid solution, the carbon content of the graphite concentrate increased to 95.55 %. The ID/IG value of the graphite concentrate was 0.145, and the average lattice spacing was approximately 0.3354 nm. The SEM results showed that the leaching-treated graphite concentrate (AFG) had a loose, fragment-like structure. When used as an anode material for lithium-ion batteries, The AFG still provided a high reversible capacity of âˆ¼370 mAh·g-1 and excellent coulombic efficiency of 99.6 % after 350 cycles. In addition, an industrial-grade recycling and utilization path for kish graphite based on a circular supply chain strategy was proposed. The results of this study may serve as a conceptual basis for the recovery and application of kish graphite from metallurgical dust.


Asunto(s)
Grafito , Carbono , Polvo , Suministros de Energía Eléctrica , Metalurgia
4.
Curr Stem Cell Res Ther ; 19(3): 417-425, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37608663

RESUMEN

OBJECTIVES: Periodontal ligament stem cells (PDLSCs) are ideal seed cells for periodontal tissue regeneration. Our previous studies have indicated that the histone methyltransferase PRDM9 plays an important role in human periodontal ligament stem cells (hPDLSCs). Whether FBLN5, which is a downstream gene of PRDM9, also has a potential impact on hPDLSCs is still unclear. METHODS: Senescence was assessed using ß-galactosidase and Enzyme-linked immunosorbent assay (ELISA). Osteogenic differentiation potential of hPDLSCs was measured through Alkaline phosphatase (ALP) activity assay and Alizarin red detection, while gene expression levels were evaluated using western blot and RT-qPCR analysis. RESULTS: FBLN5 overexpression promoted the osteogenic differentiation and senescence of hPDLSCs. FBLN5 knockdown inhibited the osteogenic differentiation and senescence of hPDLSCs. Knockdown of PRDM9 decreased the expression of FBLN5 in hPDLSCs and inhibited senescence of hPDLSCs. Additionally, both FBLN5 and PRDM9 promoted the expression of phosphorylated p38 MAPK, Erk1/2 and JNK. The p38 MAPK pathway inhibitor SB203580 and the Erk1/2 pathway inhibitor PD98059 have the same effects on inhibiting the osteogenic differentiation and senescence of hPDLSCs. The JNK pathway inhibitor SP600125 reduced the senescence of hPDLSCs. CONCLUSION: FBLN5 promoted senescence and osteogenic differentiation of hPDLSCs via activation of the MAPK signaling pathway. FBLN5 was positively targeted by PRDM9, which also activated the MAPK signaling pathway.


Asunto(s)
Osteogénesis , Ligamento Periodontal , Humanos , Osteogénesis/genética , Células Cultivadas , Diferenciación Celular , Células Madre , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/farmacología , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/farmacología , N-Metiltransferasa de Histona-Lisina/metabolismo
5.
Heliyon ; 9(11): e22479, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38045130

RESUMEN

With WHO announcing COVID-19 no longer as a public health emergency of international concern (PHEIC) on May 5, 2023, coupled with the fact that the majority of the countries of the world have dropped strict city lockdown or border closure, this perhaps signals the end of the COVID-19 crisis caused by the SARS-CoV-2 virus. However, the COVID-19 pandemic has resulted in far-reaching effects affecting nearly every aspect of our lives and society. Notably, the food industry including agriculture, food manufacturers, food logistics, distributors and retailers have all felt the profound impact and had experienced significant stress during the pandemic. Therefore, it is essential to retrospect the lessons that can be learned from this pandemic for the food industry. This short review aims to address the food safety issues related to the COVID-19 pandemic by focusing on its foodborne transmission potential, innovations of virus detection strategies suitable for food industry; development of phathogenicaidal methods and devices to inactivate SARS-CoV-2 virus (particularly in industrial scale); and the set-up of related food regulations and guidelines as preventive and control measures for preventing the spread of SARS-CoV-2 virus through the food supply chain during the pandemic. This article may provide useful references for the food industry to minimize the food safety impact of COVID-19 (as well as other respiratory virus) and allows them to better prepare for similar future challenges.

6.
Stem Cells Int ; 2023: 8992284, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323630

RESUMEN

Mesenchymal stem cells (MSCs) have been considered a potential method for the regeneration of tooth and maxillofacial bone defects based on the multidirectional differentiation characteristics of MSCs. miRNAs have been found to play a key role in the differentiation of MSCs. However, its effectiveness still needs to be improved, and its internal mechanism is still unclear. In the present study, our data discovered that the knockdown of miR-196b-5p promoted alkaline phosphatase (ALP) activity assay, mineralization in vitro, and expressions of osteo/odontogenic differentiation markers DSPP and OCN and enhanced in vivo osteo/odontogenic differentiation of stem cells of the apical papilla (SCAPs). Mechanistically, the results indicated that METTL3-dependent N6-methyladenosine (m6A) methylation inhibited miR-196b-5p maturation by the microprocessor protein DGCR8. Moreover, miR-196b-5p indirectly negatively regulates METTL3 in SCAPs. Then, METTL3 was found to strengthen the ALP activity assay, mineralization, and expressions of osteo/dentinogenic differentiation markers. Taken together, our findings highlight the critical roles of the METTL3-miR-196b-5p signaling axis in an m6A-dependent manner in osteo/odontogenic differentiation of SCAPs, identifying some potential targets for tooth and maxillofacial bone defects.

7.
Foods ; 12(6)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36981106

RESUMEN

Foodborne diseases caused by foodborne pathogens pose risks to food safety. Effective detection and efficient inactivation of pathogenic bacteria has always been a research hotspot in the field of food safety. Complicating these goals, bacteria can be induced to adopt a viable but non-culturable (VBNC) state under adverse external environmental stresses. When in the VBNC state, pathogens cannot form visible colonies during traditional culture but remain metabolically active and toxic. The resulting false negative results in growth-related assays can jeopardize food safety. This review summarizes the latest research on VBNC foodborne pathogens, including induction conditions, detection methods, mechanism of VBNC formation, and possible control strategies. It is hoped that this review can provide ideas and methods for future research on VBNC foodborne pathogenic bacteria.

8.
Oral Dis ; 29(7): 2827-2836, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36579641

RESUMEN

OBJECTIVES: Stem cells of the apical papilla (SCAPs) provide promising candidates for dental pulp regeneration. Despite great advances in the transcriptional controls of the SCAPs fate, little is known about the regulation of SCAP differentiation. MATERIALS AND METHODS: Short hairpin RNAs and full-length RNA were used to deplete or overexpress lysine demethylase 4D (KDM4D) gene expression. Western blotting, real-time RT-PCR, alizarin red staining, and scratch migration assays were used to study the role of KDM4D and the ribosomal protein encoded by RPS5 in SCAPs. RNA microarray, chromatin Immunoprecipitation (ChIP), and co-immunoprecipitation (Co-IP) assays were performed to explore the underlying molecular mechanisms. RESULTS: KDM4D enhanced the osteo/dentinogenic differentiation, migration, and chemotaxis of SCAPs. The microarray results revealed that 88 mRNAs were differentially expressed in KDM4D-overexpressed SCAPs. ChIP results showed knock-down of KDM4D increased the level of H3K9me2 and H3K9me3 in CNR1 promoter region. There were 37 possible binding partners of KDM4D. KDM4D was found to combine with RPS5, which also promoted the osteo/dentinogenic differentiation, migration, and chemotaxis of SCAPs. CONCLUSIONS: KDM4D promoted the osteo/dentinogenic differentiation and migration potential of SCAPs in combination with RPS5, which provides a therapeutic clue for improving SCAPs-based dental tissue regeneration.


Asunto(s)
Pulpa Dental , Histona Demetilasas con Dominio de Jumonji , Regeneración , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Papila Dental/metabolismo , Pulpa Dental/metabolismo , Osteogénesis/genética , ARN Interferente Pequeño , Células Madre , Humanos , Histona Demetilasas con Dominio de Jumonji/genética
9.
Cell Tissue Bank ; 24(1): 231-239, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35939161

RESUMEN

Evidences have showed stem cell mediated tissue regeneration is a promising method for the treatment of periodontitis. Insulin-like growth factor binding proteins-5 (IGFBP5) is a member of the insulin growth factor (IGFs) family and plays a regulatory role in cell proliferation and differentiation. Our previous study showed that IGFBP5 can promote osteogenic differentiation of periodontal ligament stem cells (PDLSCs) and enhance periodontal tissue regeneration mediated by PDLSCs. However, the function of IGFBP5 in the process of PDLSCs senescence remains unclear. The present study showed IGFBP5 mRNA level was highly expressed in passage-induced aged PDLSCs cells. IGFBP5 knockdown decreased the ratio of senescence associated ß-galactosidase (SA-ß-Gal) positive cells, enhanced the activity of TERT, and down-regulated the expression levels of P16, P21, P53 mRNA and protein. Overexpression of IGFBP5 increased the ratio of SA-ß-Gal positive staining PDLSCs, decreased the activity of telomerase TERT, and up-regulated the expression levels of P16, P21, P53 mRNA and protein related to PDLSCs senescence. In conclusion, IGFBP5 can accelerate the senescence of PDLSCs, indicating the potential target for maintaining the "young state" of stem cells.


Asunto(s)
Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina , Ligamento Periodontal , Ligamento Periodontal/metabolismo , Proteína 5 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Osteogénesis/genética , Proteína p53 Supresora de Tumor/metabolismo , Células Cultivadas , Células Madre , Diferenciación Celular , Proliferación Celular , ARN Mensajero/metabolismo
10.
Cell Tissue Res ; 390(2): 245-260, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35925405

RESUMEN

The peri-tooth root alveolar loss often does not have sufficient space for repair material transplantation and plasticity. Mesenchymal stem cell (MSC) sheets have an advantage in providing more extracellular matrix (ECM) and may prove to be a new therapeutic consideration for this bone defect repair. The identification of key regulators that stimulate MSCs' osteogenic potential and sheet-derived ECM deposition is the key to promoting its application. In this study, we found that inhibition or overexpression of miR-196a-5p led to a decline or enhancement, respectively, in the alkaline phosphatase (ALP) activity, mineralization, and the levels of osteogenic markers, Osteocalcin (OCN), Dentin Matrix Protein 1 (DMP1), Bone Sialoprotein (BSP), and Dentin Sialophosphoprotein (DSPP) of Wharton's jelly of umbilical cord stem cells (WJCMSCs) in vitro. Moreover, the 5,6-Carboxyfluorescein Diacetate Succinimidyl Ester (CFSE) analysis revealed inhibition of the WJCMSCs' proliferative ability upon miR-196a-5p overexpression. Characterization of the sheet formation by picrosirius red and Masson staining indicated that miR-196a-5p overexpression significantly promoted the collagen content in whole WJCMSC sheet-derived ECM. Furthermore, micro-CT and histopathology results indicated that the miR-196a-5p-overexpressed WJCMSC sheets significantly promoted new bone regeneration and rat calvarial bone defect closure 12 weeks following transplantation. The mRNA microarray analysis of miR-196a-5p-overexpressed WJCMSCs revealed 959 differentially expressed genes (DEGs) (34 upregulated and 925 downregulated). Moreover, 241 genes targeted by miR-196a-5p were predicted by using miRNA function websites of which only 19 predicted genes were consistent with the microarray revealed DEGs. Hence, one unrevealed downregulated DEG Serpin Family B Member 2 (SERPINB2) was investigated. And the deletion of SERPINB2 enhanced the ALP activity and mineralization of WJCMSCs in vitro. In conclusion, our study found that miR-196a-5p, as a key regulator, could repress the proliferation tendency, while stimulating osteogenic ability and WJCMSC sheet-derived ECM deposition, thus promoting new bone formation and rat calvarial bone defect closure. Furthermore, SERPINB2 is a key downstream gene involved in the miR-196a-5p-promoted WJCMSC osteogenesis.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Gelatina de Wharton , Animales , Ratas , Diferenciación Celular/genética , Células Cultivadas , MicroARNs/genética , MicroARNs/metabolismo , Osteogénesis/genética , Cráneo/metabolismo , Células Madre/metabolismo , Cordón Umbilical
11.
Cell Tissue Res ; 389(2): 187-199, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35543755

RESUMEN

Tooth loss and maxillofacial bone defect are common diseases, which seriously affect people's health. Effective tooth and maxillofacial bone tissue regeneration is a key problem that need to be solved. In the present study, we investigate the role of PRMT6 in osteo/odontogenic differentiation and migration capacity by using SCAPs. Our results showed that knockdown of PRMT6 promoted the osteo/odontogenic differentiation compared with the control group, as detected by alkaline phosphatase activity, alizarin red staining, and the indicators of osteo/odontogenic differentiation measured by Western blot. In addition, overexpression of PRMT6 inhibited the osteo/odontogenic differentiation potentials of SCAPs. Then, knockdown of PRMT6 promoted the migration ability and overexpression of PRMT6 inhibited the migration ability in SCAPs. Mechanically, we discovered that the depletion of PRMT6 promoted the expression of CXCL12 by decreasing H3R2 methylation in the promoter region of CXCL12. In addition, PRMT6 formed a protein complex with LMNA, a nuclear structural protein. Depletion of LMNA inhibited the osteo/odontogenic differentiation and CXCL12 expression and increased the intranucleus PRMT6 in SCAPs. To sum up, PRMT6 might inhibit the osteo/odontogenic differentiation and migration ability of SCAPs via inhibiting CXCL12. And LMNA might be a negative regulator of PRMT6. It is suggested that PRMT6 may be a key target for SCAP-mediated bone and tooth tissue regeneration.


Asunto(s)
Odontogénesis , Osteogénesis , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Quimiocina CXCL12/metabolismo , Papila Dental , Humanos , Lamina Tipo A/metabolismo , Proteínas Nucleares , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/farmacología , Transducción de Señal , Células Madre
12.
J Environ Manage ; 316: 115280, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35588665

RESUMEN

Microbial-induced struvite precipitation (MISP) is a new biocementation method for soil improvement and hydraulic permeability reduction. Compared with traditional microbial-induced carbonate precipitation (MICP), MISP can significantly reduce the production of harmful ammonium ions during biochemical reactions and convert ammonium ions into struvite with promising mechanical strength. In this study, a series of experiments were conducted to compare the performance of the MICP and the MISP processes on sandy soils. Results showed that the average content of calcium carbonate in MISP cemented sand columns after 3 times of injection is similar to that in MICP cemented sand columns after 9 times of injection. The hydraulic permeability of MISP cemented sand columns after 3 times of injection is an order of magnitude lower than that of MICP cemented sand columns after 9 times of injection. To further investigate the physicochemical interactions during MISP and MICP processes, a one-dimensional finite element code considering the chemical reactions and the solute transportation was proposed. Results show that most of the MISP were formed in the early 3 h of the 6 h injection cycle, whereas most of the MICP were formed in the last 5 h of the injection cycle. The simulated total mass of the MISP precipitation, 11.3 g, was close to the experimental result of 9.6 g. The spatial distribution of MISP is more uneven as compared to MICP, as a result of the much faster reaction rate of struvite than calcium carbonate. The findings suggested that MISP could partially replace MICP in the applications of leakage mitigation and reinforcement of sandy soils.


Asunto(s)
Compuestos de Amonio , Suelo , Carbonato de Calcio/química , Carbonatos , Precipitación Química , Arena , Suelo/química , Estruvita
13.
Stem Cells Int ; 2021: 5595580, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721591

RESUMEN

Alveolar bone remodeling under orthodontic force is achieved by periodontal ligament stem cells (PDLSCs), which are sensitive to mechanical loading. How to regulate functions of PDLSCs is a key issue in bone remodeling during orthodontic tooth movement. This study is aimed at investigating the roles of lncRNA Hedgehog-interacting protein antisense RNA 1 (HHIP-AS1) in the functional regulation of PDLSCs. First, HHIP-AS1 expression was downregulated in PDLSCs under continuous compressive pressure. Then, we found that the alkaline phosphatase activity, in vitro mineralization, and expression levels of bone sialoprotein, osteocalcin, and osterix were increased in PDLSCs by HHIP-AS1. The results of scratch migration and transwell chemotaxis assays revealed that HHIP-AS1 inhibited the migration and chemotaxis abilities of PDLSCs. In addition, the RNA sequencing data showed that 356 mRNAs and 14 lncRNAs were upregulated, including receptor tyrosine kinase-like orphan receptor 2 and nuclear-enriched abundant transcript 1, while 185 mRNAs and 6 lncRNAs were downregulated, including fibroblast growth factor 5 and LINC00973, in HHIP-AS1-depleted PDLSCs. Bioinformatic analysis revealed several biological processes and signaling pathways related to HHIP-AS1 functions, including the PI3K-Akt signaling pathway and JAK-STAT signaling pathway. In conclusion, our findings indicated that HHIP-AS1 was downregulated in PDLSCs under compressive pressure, and it promoted the osteogenic differentiation potential and inhibited the migration and chemotaxis abilities of PDLSCs. Thus, HHIP-AS1 may be a potential target for accelerating tooth movement during orthodontic treatment.

14.
Front Cell Dev Biol ; 9: 759192, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34790668

RESUMEN

Background: Tooth tissue regeneration mediated by mesenchymal stem cells (MSCs) has become the most ideal treatment. Although the known regulatory mechanism and some achievements have been discovered, directional differentiation cannot effectively induce regeneration of tooth tissue. In this study, we intended to explore the function and mechanism of miR-6807-5p and its target gene METTL7A in odontogenic differentiation. Methods: In this study, human dental pulp stem cells (DPSCs) were used. Alkaline phosphatase (ALP), Alizarin red staining (ARS), and calcium ion quantification were used to detect the odontogenic differentiation of miR-6807-5p and METTL7A. Real-time RT-PCR, western blot, dual-luciferase reporter assay, and pull-down assay with biotinylated miRNA were used to confirm that METTL7A was the downstream gene of miR-6807-5p. Protein mass spectrometry and co-immunoprecipitation (Co-IP) were used to detect that SNRNP200 was the co-binding protein of METTL7A. Results: After mineralized induction, the odontogenic differentiation was enhanced in the miR-6807-5p-knockdown group and weakened in the miR-6807-5p-overexpressed group compared with the control group. METTL7A was the downstream target of miR-6807-5p. After mineralized induction, the odontogenic differentiation was weakened in the METTL7A-knockdown group and enhanced in the METTL7A-overexpressed group compared with the control group. SNRNP200 was the co-binding protein of METTL7A. The knockdown of SNRNP200 inhibited the odontogenic differentiation of DPSCs. Conclusion: This study verified that miR-6807-5p inhibited the odontogenic differentiation of DPSCs. The binding site of miR-6807-5p was the 3'UTR region of METTL7A, which was silenced by miR-6807-5p. METTL7A promoted the odontogenic differentiation of DPSCs. SNRNP200, a co-binding protein of METTL7A, promoted the odontogenic differentiation of DPSCs.

15.
BMC Oral Health ; 21(1): 314, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34154572

RESUMEN

BACKGROUND: Epiregulin (EREG) is an important component of EGF and was demonstrated to promote the osteo/dentinogenic differentiation of stem cells from dental apical papilla (SCAPs). Whether EREG can stimulate the osteo/dentinogenic differentiation of dental pulp stem cells (DPSCs) in inflammatory environment is not clear. The purpose of the present study is to investigate the role of EREG on the osteo/dentinogenic differentiation ability of DPSCs in inflammatory environment. METHODS: DPSCs were isolated from human third molars. Short hairpin RNAs (shRNAs) were used to knock down EREG expression in DPSCs. Recombinant human EREG (rhEREG) protein was used in the rescue experiment. TNF-α was employed to mimic the inflammatory environment in vitro. Alkaline phosphatase (ALP) staining, Alizarin red staining, quantitative calcium analysis, and real-time RT-PCR were performed to detect osteo/dentinogenic differentiation markers and related signalling pathways under normal and inflammatory conditions. RESULTS: EREG depletion promoted the ALP activity and mineralization ability of DPSCs. The expression of BSP, DMP-1, and DSPP was also enhanced. Moreover, 50 ng/mL rhEREG treatment decreased the osteo/dentinogenic differentiation potential of DPSCs, while treatment with 10 ng/mL TNF-α for 4 h increased the expression of EREG in DPSCs. Conversely, EREG knockdown rescued the impaired osteo/dentinogenic differentiation ability caused by TNF-α treatment. Further mechanistic studies showed that EREG depletion activated the p38 MAPK and Erk signalling pathways in DPSCs under normal and inflammatory conditions. CONCLUSIONS: Our results demonstrated that EREG could inhibit the osteo/dentinogenic differentiation potential of DPSCs via the p38 MAPK and Erk signalling pathways. Under inflammatory environment, EREG depletion enhanced osteo/dentinogenic differentiation potential of DPSCs by improving the expression of p-p38 MAPK and p-Erk.


Asunto(s)
Epirregulina , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas p38 Activadas por Mitógenos , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Pulpa Dental/metabolismo , Humanos , Osteogénesis , Células Madre/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Stem Cells ; 39(8): 1049-1066, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33684230

RESUMEN

Bone regeneration and remodeling are complex physiological processes that are regulated by key transcription factors. Understanding the regulatory mechanism of key transcription factors on the osteogenic differentiation of mesenchymal stem cells (MSCs) is a key issue for successful bone regeneration and remodeling. In the present study, we investigated the regulatory mechanism of the histone deacetylase Sirtuin 7 (SIRT7) on the key transcription factor OSX and osteogenesis of MSCs. In this study, we found that SIRT7 knockdown increased ALP activity and in vitro mineralization and promoted the expression of the osteogenic differentiation markers DSPP, DMP1, BSP, OCN, and the key transcription factor OSX in MSCs. In addition, SIRT7 could associate with RNA binding motif protein 6 (RBM6) to form a protein complex. Moreover, RBM6 inhibited ALP activity, the expression of DSPP, DMP1, BSP, OCN, and OSX in MSCs, and the osteogenesis of MSCs in vivo. Then, the SIRT7/RBM6 protein complex was shown to downregulate the level of H3K18Ac in the OSX promoter by recruiting SIRT7 to the OSX promoter and inhibiting the expression of OSX isoforms 1 and 2. Furthermore, lncRNA PLXDC2-OT could associate with the SIRT7/RBM6 protein complex to diminish its binding and deacetylation function in the OSX promoter and its inhibitory function on OSX isoforms 1 and 2 and to promote the osteogenic potential of MSCs.


Asunto(s)
Células Madre Mesenquimatosas , ARN Largo no Codificante , Proteínas de Unión al ARN , Sirtuinas , Factor de Transcripción Sp7 , Diferenciación Celular/genética , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/metabolismo , Osteogénesis/genética , Isoformas de Proteínas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Sirtuinas/metabolismo , Factor de Transcripción Sp7/genética , Factor de Transcripción Sp7/metabolismo
17.
Nat Commun ; 12(1): 1637, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712598

RESUMEN

N-staging is a determining factor for prognostic assessment and decision-making for stage-based cancer therapeutic strategies. Visual inspection of whole-slides of intact lymph nodes is currently the main method used by pathologists to calculate the number of metastatic lymph nodes (MLNs). Moreover, even at the same N stage, the outcome of patients varies dramatically. Here, we propose a deep-learning framework for analyzing lymph node whole-slide images (WSIs) to identify lymph nodes and tumor regions, and then to uncover tumor-area-to-MLN-area ratio (T/MLN). After training, our model's tumor detection performance was comparable to that of experienced pathologists and achieved similar performance on two independent gastric cancer validation cohorts. Further, we demonstrate that T/MLN is an interpretable independent prognostic factor. These findings indicate that deep-learning models could assist not only pathologists in detecting lymph nodes with metastases but also oncologists in exploring new prognostic factors, especially those that are difficult to calculate manually.


Asunto(s)
Aprendizaje Profundo , Escisión del Ganglio Linfático/métodos , Neoplasias Gástricas/diagnóstico por imagen , Neoplasias Gástricas/patología , Femenino , Humanos , Estimación de Kaplan-Meier , Ganglios Linfáticos/patología , Metástasis Linfática/diagnóstico por imagen , Metástasis Linfática/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Pronóstico , Análisis de Supervivencia
18.
Connect Tissue Res ; 62(3): 325-336, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32151168

RESUMEN

Purpose: Adipose-derived stem cells (ADSCs) are ideal for cell-based therapies to support bone regeneration. It is vital to understand the critical genes and molecular mechanisms involved in the functional regulation of ADSCs for enhancing bone regeneration. In the present study, we investigated the Gremlin 1 (GREM1) effect on ADSCs osteogenic differentiation and senescence.Materials and methods: The in vitro ADSCs osteogenic differentiation potential was evaluated by determining alkaline phosphatase (ALP) activity, mineralization ability, and the expression of osteogenic markers. Cell senescence is determined by SA-ß-gal staining, telomerase assay, and the expression of aging markers.Results: GREM1 overexpression in ADSCs reduced ALP activity and mineralization, inhibited the expression of osteogenic related genes OCN, OPN, DSPP, DMP1, and BSP, and key transcription factors, RUNX2 and OSX. GREM1 knockdown in ADSCs enhanced ALP activity and mineralization, promoted the expression of OCN, OPN, DSPP, DMP1, BSP, RUNX2, and OSX. GREM1 overexpression in ADSCs reduced the percent SA-ß-Gal positive cells, P16 and P53 expressions, and increased telomerase activity. GREM1 knockdown in ADSCs increased the percentage of SA-ß-Gal positive cells, P16 and P53 expressions, and reduced telomerase activity. Furthermore, GREM1 reduced the mRNA expression levels of BMP2, BMP6, and BMP7.Conclusions: In summary, our findings suggested that GREM1 inhibited ADSCs senescence and osteogenic differentiation and antagonized BMP transcription.


Asunto(s)
Osteogénesis , Telomerasa , Diferenciación Celular , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Osteogénesis/genética , Células Madre , Telomerasa/genética , Proteína p53 Supresora de Tumor
19.
FEBS Open Bio ; 11(1): 278-288, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33206457

RESUMEN

Human umbilical cord mesenchymal stem cells can be obtained from different parts of the umbilical cord, including Wharton's jelly. Transplantation of Wharton's jelly umbilical cord stem cells (WJCMSCs) is a promising strategy for the treatment of various diseases. However, the molecular mechanisms underlying the proliferation of WJCMSCs are incompletely understood. Here, we report that overexpression of miR-196b-5p in WJCMSCs suppresses proliferation and arrests the cell cycle in G0/G1 phase, whereas knockdown of miR-196b-5p promotes WJCMSC proliferation and cell-cycle progression. Moreover, miR-196b-5p overexpression resulted in decreased levels of Cyclin A, Cyclin D, Cyclin E and cyclin-dependent kinases 2 and increased levels of p15INK4b , whereas miR-196b-5p knockdown had the opposite effects. In conclusion, our data suggests that miR-196b-5p inhibits WJCMSC proliferation by enhancing G0/G1-phase arrest.


Asunto(s)
Proliferación Celular/genética , Células Madre Mesenquimatosas/fisiología , MicroARNs/metabolismo , Diferenciación Celular , Línea Celular , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Humanos , Cordón Umbilical/citología , Gelatina de Wharton/citología
20.
Oral Dis ; 27(7): 1738-1746, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33128313

RESUMEN

OBJECTIVES: Dental tissue-derived mesenchymal stem cell (MSC)-mediated tooth regeneration may be a useful therapeutic tool for repairing tooth loss. However, the low success rate of tooth regeneration restricts its clinical application. Identifying key factors for enhancing dentinogenesis in MSCs is crucial for promoting tooth regeneration. MATERIALS AND METHODS: Human dental pulp stem cells (DPSCs) were transfected with retrovirus to obtain SFRP2-over-expressing DPSCs. Alkaline phosphatase (ALP) activity assay, Alizarin red staining, quantitative analysis of calcium, and dentinogenesis-related genes were detected. Additionally, transplantation in a rabbit tooth extraction model was used to explore the role of SFRP2 in dentin regeneration. RESULTS: We found SFRP2 over-expression greatly enhanced ALP activity, and mineralization in DPSCs. Real-time RT-PCR revealed SFRP2 over-expression promoted the expressions of OSX, RUNX2, DSPP, DMP1, and BSP. Moreover, Micro CT analysis showed high-density calcification occurred to a much higher extent in SFRP2 over-expressing group compared to control group in vivo. Additionally, HE staining, immmunohistochemistry staining, and scanning electron microscopy results showed much more dentin-like tissue formed in SFRP2 over-expressing group compared to control group. CONCLUSIONS: Our findings revealed SFRP2 is an important regulator that enhances the dentinogenesis of DPSCs and dentin regeneration in the jaw, which may have clinical applications.


Asunto(s)
Pulpa Dental , Células Madre , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Dentina , Osteogénesis , Conejos , Regeneración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...